Energy harvesting

Energy harvesting (EH) – also known as power harvesting, energy scavenging, or ambient power – is the process by which energy is derived from external sources (e.g., solar power, thermal energy, wind energy, salinity gradients, and kinetic energy, also known as ambient energy), then stored for use by small, wireless autonomous devices, like those used in wearable electronics, condition monitoring,[1] and wireless sensor networks.[2]

Energy harvesters usually provide a very small amount of power for low-energy electronics. While the input fuel to some large-scale energy generation costs resources (oil, coal, etc.), the energy source for energy harvesters is present as ambient background. For example, temperature gradients exist from the operation of a combustion engine and in urban areas, there is a large amount of electromagnetic energy in the environment due to radio and television broadcasting.

One of the first examples of ambient energy being used to produce electricity was the successful use of electromagnetic radiation (EMR) to generate the crystal radio.

The principles of energy harvesting from ambient EMR can be demonstrated with basic components.[3]

  1. ^ Panayanthatta, Namanu; Clementi, Giacomo; Ouhabaz, Merieme; Costanza, Mario; Margueron, Samuel; Bartasyte, Ausrine; Basrour, Skandar; Bano, Edwige; Montes, Laurent; Dehollain, Catherine; La Rosa, Roberto (January 2021). "A Self-Powered and Battery-Free Vibrational Energy to Time Converter for Wireless Vibration Monitoring". Sensors. 21 (22): 7503. Bibcode:2021Senso..21.7503P. doi:10.3390/s21227503. ISSN 1424-8220. PMC 8618968. PMID 34833578.
  2. ^ Guler U, Sendi M.S.E, Ghovanloo, M, dual-mode passive rectifier for wide-range input power flow, IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Aug. 2017.
  3. ^ Tate, Joseph (1989). "The Amazing Ambient Power Module". Ambient Research. Retrieved 16 January 2008.

Developed by StudentB